MATH 245 F20, Exam 3 Solutions

1. Freebie.

2. Let $S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=6 y+5\}$ and $T=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=2 y+1\}$. Prove or disprove that $S=T$.
The statement is false, and will be disproved with a counterexample. I choose 1 ; others can work. Note that $1 \in T$, because $2 \cdot 0+1=1$, and $0 \in \mathbb{Z}$. However, $1 \notin S$, because otherwise we would have an integer y with $1=6 y+5$, so $-4=6 y$, and $y=-\frac{2}{3}$ (which is not an integer).
3. Let R, S, T be sets. Prove that $(R \backslash S) \backslash T \subseteq R \backslash(S \backslash T)$.

Let $x \in(R \backslash S) \backslash T$. Then $x \in(R \backslash S) \wedge x \notin T$. By simplification, $x \in(R \backslash S)$, and hence $x \in R \wedge x \notin S$. By simplification again, twice, we get $x \in R$ and $x \notin S$. By addition, $x \notin S \vee x \in T$. By double negation, $\neg x \in S \vee \neg \neg x \in T$. By De Morgan's Law (on propositions), $\neg(x \in S \wedge x \notin T)$, i.e. $\neg(x \in S \backslash T)$, i.e. $x \notin(S \backslash T)$. Going back, we also had $x \in R$. By conjunction, $x \in R \wedge x \notin(S \backslash T)$. Hence $x \in R \backslash(S \backslash T)$.
4. Let $S=\{x\}$. Find a set T that simultaneously satisfies all of the following properties: $S \nsubseteq T, 2^{S} \in T, 2^{S} \subseteq T, S \times 2^{S} \subseteq T$. Be very careful about notation.

Take $T=\{\underbrace{\{\emptyset,\{x\}}_{2^{S} \in T}, \underbrace{\emptyset,\{x\}}_{2^{S} \subseteq T}, \underbrace{(x, \emptyset),(x,\{x\})}_{S \times 2^{S} \subseteq T}, \underbrace{z, \text { your Mom }}_{\text {extras }}\}$.
Correct answers must have the five specific elements listed, as well as perhaps extras (but may not contain element x, since otherwise $S \subseteq T$).
5. Prove or disprove: For all sets S, U with $S \subseteq U$, we have $2^{S} \cup 2^{\left(S^{c}\right)}=2^{U}$.

The statement is false, and needs a counterexample. A correct counterexample consists of three things: a set U, a set S, and an element of 2^{U} that is not an element of $2^{S} \cup 2^{\left(S^{c}\right)}$. These last properties must be adequately justified.
Many counterexamples are possible; I choose $U=\{1,2,3,4\}, S=\{1,2\}$, and $x=\{1,3\}$. Because $x \subseteq U$, in fact $x \in 2^{U}$. However, $x \nsubseteq S$ so $x \notin 2^{S}$. Also, $S^{c}=\{3,4\}$, so $x \nsubseteq S^{c}$ and hence $x \notin 2^{\left(S^{c}\right)}$. Since $x \notin 2^{S}$ and $x \notin 2^{\left(S^{c}\right)}$, by conjunction $x \notin 2^{S} \wedge x \notin 2^{\left(S^{c}\right)}$. By De Morgan's Law (for propositions), $\neg\left(x \in 2^{S} \vee x \in 2^{\left(S^{c}\right)}\right)$ so $\neg x \in\left(2^{S} \cup 2^{\left(S^{c}\right)}\right)$ and thus $x \notin\left(2^{S} \cup 2^{\left(S^{c}\right)}\right)$.
6. Let A, B, C be sets. Prove that $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$.

Part 1: Let $x \in A \times(B \backslash C)$. Then $x=(m, n)$ with $m \in A$ and $n \in B \backslash C$. Hence $n \in B \wedge n \notin C$; by simplification twice $n \in B$ and $n \notin C$. Hence $x \in A \times B$ since $m \in A$ and $n \in B$. Also $x \notin A \times C$ since $n \notin C$. Hence by conjunction $x \in A \times B \wedge x \notin A \times C$, so $x \in(A \times B) \backslash(A \times C)$.
Part 2: Let $x \in(A \times B) \backslash(A \times C)$. Then $x \in A \times B \wedge x \notin A \times C$. By simplification twice, $x \in A \times B$ and $x \notin A \times C$. Because $x \in A \times B, x=(m, n)$ with $m \in A$ and $n \in B$. Because $x \notin A \times C$ (and yet $m \in A$) we must have $n \notin C$. By conjunction, $n \in B \wedge n \notin C$. Hence $n \in B \backslash C$. Hence $x \in A \times(B \backslash C)$.
7. Let S be the set of letters in your name (choose first or last). Find a relation R on S that is not reflexive, not irreflexive, not symmetric, not antisymmetric, not trichotomous, and not transitive. Give your relation as a directed graph, and fully justify each of these properties.
Using my last name of Ponomarenko, we have $S=\{P, o, n, m, a, r, e, k\}$. Many relations R can work; here is one example:

$$
G P \longleftrightarrow o \longrightarrow n \quad m \quad a \quad r \quad e \quad k
$$

R is not reflexive since $(o, o) \notin R . \quad R$ is not irreflexive since $(P, P) \in R . \quad R$ is not symmetric since $(o, n) \in R$ but $(n, o) \notin R$. R is not antisymmetric since $(P, o) \in R$ and $(o, P) \in R$ (and $o \neq P) . R$ is not trichotomous since $(n, m) \notin R$ and $(m, n) \notin R$ (and $m \neq n$). R is not transitive since $(P, o) \in R$ and $(o, n) \in R$ yet $(P, n) \notin R$.
8. Let S be a set, $T \subseteq S$, and R a reflexive relation on S. Prove that $\left(\left.R\right|_{T}\right)^{+}$is reflexive.

First, note that $\left(\left.R\right|_{T}\right)^{+}$is a relation whose ground set is the same as the ground set of $\left.R\right|_{T}$, namely T. Hence we need to prove that $\forall x \in T,(x, x) \in\left(\left.R\right|_{T}\right)^{+}$. Let $x \in T$ be arbitrary. Since $T \subseteq S$, in fact $x \in S$. Since R is a reflexive relation on S, in fact $(x, x) \in R$. Since $(x, x) \in R$ and $x \in T$, we have $\left.(x, x) \in R\right|_{T}=\left(\left.R\right|_{T}\right)^{(1)}$. Now, $\left(\left.R\right|_{T}\right)^{+}=\left(\left.R\right|_{T}\right)^{(1)} \cup\left(\left.R\right|_{T}\right)^{(2)} \cup \cdots$. Since (x, x) is an element of the first set listed, it is an element of the union of all of them, so $(x, x) \in\left(\left.R\right|_{T}\right)^{+}$.

